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What’s this about?

I’ll talk about decomposing Rn using symmetries.
Question is how can you use symmetries to put any
vector into the simplest possible form?
Simple version: symms are chging signs of some
coords, and adding an integer to a coord.
Next: add the symms exchanging any two coords.
Having tried to explain the simplification process in
those two examples, I will talk about a general
mathematical setting where the same ideas apply.
The math secret code word is affine Weyl group.
In the unlikely event that I finish those topics before
four o’clock, I will finish with my mathematical
reasons for looking at such simplification problems.
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Reducing modulo Z

How can you simplify v ∈ Rn by adding ints to any
coord and chging sgns of any coord?
First process allows moving any v to

WA =def [−1/2,1/2]n.

(8/3,−4/5,2)
+(−3,1,−2)
−→ (−1/3,1/5,0).

Then the second process allows moving v to

A =def [0,1/2]n.

(−1/3,1/5,0)
(−,+,±)
−→ (1/3,1/5,0).
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Let’s write that as a Theorem

Define T = Zn, translations of Rn by integers.
Define W = (±1)n, coord sign changes in Rn.

Recall A = [0,1/2]n, WA = [−1/2,1/2]n.

Theorem
1. For all v ∈ Rn ∃t ∈ Zn so v1 =def t + v ∈WA.
2. t is unique except in coords with vi ∈ Z+ 1/2.
3. For all v1 ∈WA ∃w ∈ ±1n so w · v1 =def v0 ∈ A.
4. w is unique except in coords where v1

i = 0.
5. v0 is unique.

Symm grp we want is W o T , a semidirect product.

This is an affine Weyl group of type (Ã1)
n.

But the main point is statements in Theorem.
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Let’s draw that as a picture

I’m interested in the hyperplanes in Rn

Hi ,m = {v ∈ Rn | 2vi = m} (1 ≤ i ≤ n, m ∈ Z).

For each hyperplane, I’m interested in the reflection

si ,m(v) = v − (2vi −m)ei
= (v1, · · · , vi−1,−vi + m, vi+1, · · · , vn).

si ,m chgs sign of i th coord and translates by m.

s s s s s s s s s s ss s s s s su u u u us s s s s s s s s s ss s s s s su u u u us s s s s s s s s s ss s s s s su u u u u

(−2,−1) (−1,−1) (0,−1) (1,−1) (2,−1)

(−2,0) (−1,0) (0,0) (1,0) (2,0)

(−2,1) (−1,1) (0,1) (1,1) (2,1)
H2,2

H2,1

H2,0

H2,−1

H2,−2

H2,−3
H1,−5 H1,−4 H1,−3 H1,−2 H1,−1 H1,0 H1,1 H1,2 H1,3 H1,4 H1,5
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How does the picture prove the theorem?

Start with any v ∈ Rn.

Want to use hyperplane reflections to move v to

A = u ss s
Whenever v is on the wrong side of a hyperplane Hi ,m

from A, reflect v in that hyperplane, moving it closer to A.

s s s s s s s s s s ss s s s s su u u u us s s s s s s s s s ss s s s s su u u u us s s s s s s s s s ss s s s s su u u u u

(−2,−1) (−1,−1) (0,−1) (1,−1) (2,−1)

(−2,0) (−1,0) (0,0) (1,0) (2,0)

(−2,1) (−1,1) (0,1) (1,1) (2,1)
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That wasn’t complicated enough to be math

Add more symmetries: interchanging coords of v .
How can you simplify v ∈ Rn by adding integers,
chging coord sgns, and permuting coords?
First process (still) allows moving any v to

WA =def [−1/2,1/2]n.

(7/4,−3/5,3/2)
+(−2,1,−2)
−→ (−1/4,2/5,−1/2).

Last two processes move v to (much smaller)

A =def
{
v ∈ Rn | 1/2 ≥ v1 ≥ v2 ≥ · · · ≥ vn ≥ 0

}
.

(−1/4,2/5,−1/2) −→ (1/2,2/5,1/4).

A is an n-simplex, volume = 1/(2n · n!)
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This too is a Theorem

Define T = Zn, translations of Rn by integers.
Define W = Sn n (±1)n, coord perms and sign changes.

Our new A = {1/2 ≥ v1 ≥ · · · ≥ vn ≥ 0}, WA = [−1/2,1/2]n.

Unit cube WA is union of 2n · n! translates of simplex A.

Theorem
1. For all v ∈ Rn ∃t ∈ Zn so v1 =def t + v ∈WA.
2. t is unique except in coords with vi ∈ Z+ 1/2.
3. For all v1 ∈WA ∃w ∈W so w · v1 =def v0 ∈ A.
4. w is unique unless v1

i = 0 or ±v1
i ± v1

j = 0.
5. v0 is unique.

Symmetry grp we want is W n T , a semidirect product.

This is an affine Weyl group of type B̃n.

But the main point is statements in Theorem.
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Draw the new Theorem as a picture
New hyperplanes are

Hi ,±j ,m = {v ∈ Rn | vi ± vj = m} (1 ≤ i , j ≤ n, m ∈ Z).

For each hyperplane, we want the reflection

si ,±j ,m(· · · , vi , · · · , vj , · · · ) = (· · · ,±vj + m, · · · ,±vi ±m, · · · ).

si ,±j ,m interchanges i th and j th coords, multiplying both by
±, and translates by m(ei ± ej).

s s s s s s s s s s s
s s s s s su u u u u
s s s s s s s s s s s
s s s s s su u u u u
s s s s s s s s s s s
s s s s s su u u u u
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What’s a facet?
The reflection hyperplanes (like {vi + vj = m} each divide Rn into
three pieces: the hyperplane itself, and two open pieces.

These hyperplanes divide Rn into facets. Here’s R2.

c c c c c cr r r r rr r r r r rs s s s sc c c c c cr r r r rr r r r r rs s s s sc c c c c cr r r r rr r r r r rs s s s s
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a facet, called an al-
cove. An alcove has
three kinds of 1-diml
facets as edges, and
three kinds of 0-diml
facets as vertices.

There are three kinds of 0-diml facets:

1. integral (p,q) (p and q in Z);
2. half-integral (p + 1/2,q + 1/2); and
3. mixed (p + 1/2,q) or (p,q + 1/2).

There are three kinds of 1-diml facets (black open intervals):

1. horiz or vert, with one red and one black endpoint;
2. horiz or vert, with one blue and one black endpoint; and
3. diagonal (always with one red and one blue endpoint).
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Everything you always wanted to know about facets

T = Zn, transl of Rn; W = Sn n (±1)n = type Bn Weyl group.

W̃ = W n T = affine Weyl group.
Everything below works for W = any Weyl group, T = root lattice.

An alcove is a conn component of Rn − (all refl hyperplanes).

Theorem W̃ acts simply transitively on alcoves.

1. The fundamental alcove A is the n-simplex
A = {1/2 ≥ v1 ≥ · · · ≥ vn ≥ 0}.

2. The n + 1 vertices of A are fm = (1/2, · · · ,1/2︸          ︷︷          ︸
m terms

, 0, · · · ,0︸   ︷︷   ︸
n −m terms

).

3. Each alcove is an n-simplex, so has (n+1
d+1) d-faces.

4. Every d-diml facet is a d-face of some alcove.

This theorem provides a computer-effective way to list all facets.

I’ll return to that after explaining why one might want a list of
facets.
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And now for something completely different

My favorite problem in the whole world is the unitary
dual problem.
Start with a group G; look for all ways that G can act
by isometries of Hilbert spaces.
Quantum mech systems live on Hilbert space, so
unitary rep! symmetry of quantum systems.

How can you look for unitary reps?
I’ll explain how looking for unitary reps of simple Lie
groups leads to geometry of facets.
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Two important subgroups for GL(n,R)

K (R) = O(n) = orthogonal group,
A = positive diagonal matrices,

A+ = positive diag mats with decreasing entries.

Any invertible n × n real g has a polar decomposition
g = k1ak2, (a ∈ A+, ki ∈ O(n)).

Matrix a is unique. Diagonal entries of a are the singular
values of g. Largest singular value is

a1 = max
v∈Rn\0

‖gv‖
‖v‖

,

the largest amount that g can stretch a vector.

Similarly, an is the least that g can shrink a vector.

Since K (R) is compact, polar decomp says that A—better,
A+—enumerates all ways to go to infinity in GL(n,R).
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So what can you do with KAK ?

K = O(n) = orthogonal group,

A = positive diagonal matrices,

A+ = positive diag mats with decreasing entries.

Study harmonic functions on the unit disc by boundary values:
limiting behavior in radial directions.

Same applies to functions on GL(n,R) = KAK : helps to study
limiting behavior in the A variable, particularly along A+.

(approximate) Theorem (Harish-Chandra). Nice fn φ on GL(n,R)
is exponential at infinity: have an asymptotic expansion

φ(k1ak2) ∼ c(k1, k2)aν + lower terms, (a ∈ A∗ → ∞)

with ν ∈ Cn. Here aν = aν1
1 · · · a

νn
n .

HC/Langlands idea: reps of GL(n,R) are indexed by ν ∈ Cn

describing their asymptotic behavior at infinity.

which reps are unitary! which facet ν is in!
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How do you make reps of GL(n,R)?

Reps of G on fns on homogeneous spaces G/H.

Better: sections of vector bundles E → G/H.

Best space to use for GL(n,R):

X = complete flags 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Rn.

X has n real line bundles Ei , fiber Vi/Vi−1.

ν ∈ Rn  real line bundle Eν = |E1|
ν1 ⊗ · · · ⊗ |En |

νn

πν = sections of Eν ⊗ D1/2, nice rep of GL(n,R).

Here D1/2 is half-density bundle on X , useful normalization.
If ρ = ((n − 1)/2, (n − 3)/2, · · · ,−(n − 1)/2), then D1/2 = Eρ.

Theorem (HC, Helgason, Helgason-Johnson). Say ν1 ≥ · · · ≥ νn.

1. πν has asymptotic behavior aν−ρ at infinity on A+.
2. πν bdd ⇐⇒ ν ∈ ρ − (nonneg combs of pos roots ei − ej ).
3. πν herm ⇐⇒ ν = (v1, · · · , vm, {0},−vm, · · · ,−v1).
4. In (3), whether πν is unitary! facet of v .
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How to classify unitary reps of GL(2m,R)

Unitary reps of GL(2m,R) indexed by some facets in
v = (v1, . . . , vm), v1 ≥ · · · ≥ vn ≥ 0

v1 + v2 · · ·+ vp ≤ (m − 1/2) + (m − 3/2) + · · ·+ (m − (2p − 1)/2)
So to describe unitary representations, need to

1. enumerate finite # facets satisfying inequalities; and
2. for each facet, test whether one v in facet is unitary.

Test (2) is possible using atlas software.
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Blue quadrilateral is the
candidates allowed by
Helgason-Johnson: 7
alcoves, 29 facets. Red
parallelogram FPP is a
better bound found by
Dan Barbasch: 4 al-
coves, 19 facets.

Same ideas unitary duals for all real reductive G.



Alcoves and facets

David Vogan

Introduction

Integer parts. . .

. . . and ordering

Facets

Group repns

So what’s the program?

General G: pos roots R+ ⊂ R vec space h∗R replaces Rn.

Weyl group W replaces Sn n {±1}n.

Hyperplanes are Hα∨,m = {γ ∈ h∗ | 〈γ, α∨〉 = m}.

FPP is {γ ∈ h∗R | 〈γ, α
∨ ∈ [0,1], all α simple}.

Need to

1. compute partition of FPP into facets
2. for one v in each facet, test unitarity of finitely many

reps of infl char v .

For E7, number of facets in FPP is about 38 million;
compute them in few hours.

For E8, number of facets in FPP is about 30 billion;
compute in a month or so.

test is harder. . .
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